

Diploma in Brewing Module 3 Syllabus

Version	Description	Author	Approval	Effective Date
No.				
1	, ,	Syllabus Portfolio Manager	Chair of Board of Examiners	10/06/2025

UNIT 1: RESOURCE MANAGEMENT

Candidates are required to have an in-depth understanding of the following:

Environmental Sustainability

- 1. Understand the global context for sustainable development.
 - i. Sustainability Context and Key Concepts
 - ii. What does sustainable mean?
 - iii. UN Sustainable Development Goals
- 2. Understand the key drivers of climate change, its impacts and mitigation opportunities.
 - i. Climate Action
 - ii. Impacts of Climate Change
 - iii. What is the Global Community doing to Combat Climate Change?
 - iv. Why does Climate Action Matter to Brewers?
- 3. Describe key environmental impacts of brewing that can be controlled or reduced; especially water and energy use and waste.
 - i. Circular Economy
- 4. Describe the management techniques available to increase environmental sustainability of brewery operations such as water and energy use.
 - i. Energy and Carbon Management
 - ii. Energy and Carbon Management Continued
 - iii. Key Steps to Implementing an Energy Management System
 - iv. Energy and Carbon Improvement Projects
 - v. Water Management
- 5. Identify opportunities for innovation that reduce environmental impact from brewing.
 - i. Understanding our Watershed Context
 - ii. How Much Water?
 - iii. Water Management Systems
 - iv. Water Use Improvement Projects
 - v. Solid Waste
 - vi. Waste Management Principles
 - vii. Waste Reduction
 - viii. Co-products
 - ix. Feedstocks, Processes, and Products

Health and Safety

- 1. Understand the types of health and safety legislation which may apply to a brewery, and the actions required by the owners, managers and employees.
 - i. Safety First
 - ii. Occupational Health and Safety in the Brewing Industry
 - iii. Relevant National and Local Legislation and Regulations
- 2. Understand how health and safety should be managed within an organisation.
 - i. Notices, Signs and Signals
 - ii. Health and Safety in the Organisation
 - iii. Behaviour Based Safety (BBS)
- 3. Conduct risk assessments using various risk identification methods.
 - i. Brewery Hazards and Risks
 - ii. Risk Evaluation
- 4. Describe the key hazards found in a brewery, including knowledge of dust and ammonia risk control.
 - i. Key Risks
 - ii. Key Risks Chemicals
 - iii. Key Risks Gas
- 5. Appreciate the importance of near miss and accident investigations.
 - i. Near Miss and Accident Investigation

Maintenance

- 1. Understand the goals and deliverables of a maintenance programme.
 - i. What Are the Goals of Brewery Maintenance?
 - ii. Successful Maintenance Approaches
- 2. Describe the features, advantages, disadvantages, and applications of no maintenance, run to failure (RTF), preventative maintenance (PM), and predictive maintenance (PdM).
 - i. Maintenance Approach: No Maintenance
 - ii. Maintenance Approach: Run-To-Failure (RTF)
 - iii. Maintenance Approach: Preventative Maintenance (PM)
 - iv. Maintenance Approach: Predictive Maintenance (PdM)
- 3. Explain the main elements required to successfully set up and run a maintenance programme and department.
 - i. Maintenance Approach Summary: Putting It All Together

- 4. Demonstrate a clear understanding of how maintenance is executed across brewing.
 - i. Establishment and Evolution of a Brewery Maintenance Programme
- 5. Compare the relationships between maintenance and safety, reliability, quality, economics, and environmental impact.
 - i. Implementation: The True Nuts and Bolts of Maintenance
- 6. Understand the statutory (legal and legislative) maintenance requirements and obligations.
 - i. Maintenance Regulations and Guidance
- 7. Recognise and explain the importance of partnering design and engineering to provide a robust, safe, and flexible brewery.
 - i. Maintenance by Design
 - ii. The True Cost of Assets

UNIT 2: FLUID MECHANICS

Candidates are required to have an in-depth understanding of the following:

Principles of Fluid Mechanics 1

- 1. Describe the concept of viscosity related to fluids.
 - i. Definition of Fluids
- 2. Explain the difference between Newtonian and non-Newtonian fluids, as described by Newton's law of viscosity.
 - i. Viscosity and Newton's Law of Viscosity
 - ii. The Units of Dynamic Viscosity
 - iii. Non-Newtonian Fluids
- 3. Solve static fluid problems to determine the value of pressure in practical situations and understand which parameters can influence the value of pressure.
 - i. Fluid Statics & Dynamics
 - ii. Fluid Statics
 - iii. Gauge and Absolute Pressures
 - iv. Vertical Differences of Height
 - v. The Concept of Head
 - vi. Horizontal Distances A Special Consideration
- 4. Describe different types of pressure instrumentation.
 - i. Pressure Measurement
 - ii. Differential or U-tube Manometer
 - iii. The Bourdon Gauge

Principles of Fluid Mechanics 2

- 1. Understand and be able to apply the concept of mass and energy conservation to pipe and duct flows.
 - i. Fluid Dynamics
 - ii. Conservation of Mass
 - iii. Conservation of Energy
 - iv. Accounting for Gravitational Potential, Kinetic and Pressure Energies
 - v. Bernoulli's Equation Brewery Application
- 2. Apply the concept of the Reynolds number to defining laminar, transitional or turbulent pipe flows in circular and non-circular geometries.
 - i. Velocity Regimes: Laminar, Transitional, and Turbulent
 - ii. Laminar Flow
 - iii. Turbulent Flow
 - iv. Transitional Flow
- 3. Describe common brewery fluids which are transported under laminar or turbulent flow conditions.
 - i. Determining Re for Non-circular Pipes/Ducts

Principles of Fluid Mechanics 3

- 1. Describe the contribution and causes of frictional and fitting pressure losses to the pressure drop in a pipe or duct system.
 - i. The Loss of Energy in Pipe Systems in Practice
 - ii. Frictional Pressure Losses
- 2. Apply the Darcy-Weisbach equation and Moody diagram to quantify frictional pressure drop.
 - i. The Friction Factor φ
 - ii. Pressure Drop, Friction, and the Darcy-Weisbach Equation
- 3. Apply the loss coefficient approach to quantify pressure losses due to pipe and duct fittings.
 - i. Quantifying Fitting Pressure Losses
 - ii. Loss Coefficient (k)
 - iii. Fitting Pressure Loss Worked Example
 - iv. Combining Frictional and Fitting Pressure Losses
 - v. Fitting Pressure Loss
- 4. Specify typical design pipe and duct velocities and pressure drops.
 - i. Design Flow Rates and Frictional Pressure Drops

Control of Fluid Flow 1

- 1. Describe the principle of operation of centrifugal and positive displacement pumps.
 - i. Centrifugal Pumps
 - ii. Impeller Design Types
 - iii. Centrifugal Pump Operating Characteristics
- 2. Recommend pump types for different brewery applications.
 - i. Pump Mechanical Shaft Seals
 - ii. Positive Displacement Pumps
 - iii. Rotary Displacement Pumps
 - iv. Pumps in Series
- 3. Discuss the various criteria used to define pump performance.
 - i. Pump Performance
- 4. Describe the principle of matching a pump performance to a piping system requirement using the pump-curve approach and apply this principle to simple situations.
 - i. Matching Pump Characteristics to Pumping Duty
- 5. Describe the approaches of flow rate control and pump starting procedures.
 - i. Control of Pumps
 - ii. Pump Flow Control

Control of Fluid Flow 2

- 1. Describe the process of cavitation, including its causes and consequences for product quality and equipment integrity.
 - i. Cavitation
 - ii. Dissolved Gas Evolution
- 2. Compare and contrast the related concepts of available net positive suction head and required net positive suction head.
 - i. Net Positive Suction Head (NPSH) NPSHA
 - ii. Net Positive Suction Head (NPSH) NPSHR
- 3. Apply the concept of net positive suction head to pump operation and system design to ensure that cavitation does not occur.

Control of Fluid Flow 3

- 1. Describe the difference between on-off and modulating flow control and give brewing examples.
- 2. Describe the concept of valve flow rate characteristic and explain why it is important for different aspects of flow control.
- 3. Discuss various valve types and their principle of operation.
 - i. Valve Types Butterfly Valve
 - ii. Ball Valve
 - iii. Gate Valve
 - iv. Globe Valve
 - v. Non-return Valve
 - vi. Pressure Relief Valve
 - vii. Vacuum Relief Valve
 - viii. Pressure Reducing Valve
 - ix. Sampling Valve
- 4. Explain the concept of block and bleed and double-seat mixproof valves as a means of managing valve leakage.
 - i. Valve Leakage

UNIT 3: GASES

Candidates are required to have an in-depth understanding of the following:

Gas Laws

- 1. Apply the gas laws of Boyle, Charles, and Gay-Lussac to describe the behaviour of a volume of gas under pressure and temperature.
 - ii. Gas Laws Boyle's Law
 - iii. Gas Laws Charles' Law
 - iv. Gas Laws Gay-Lussac Law
- 2. Apply the ideal gas law in determining ideal gas behaviour, including estimating gas density changes with pressure and temperature.
 - v. Universal Gas Law The Mole
 - vi. Universal Gas Law
 - vii. Specific Gas Constant R
 - viii. Ideal Gases
- 3. Describe and apply Dalton's law to gas mixtures.
 - ix. Dalton's Law of Gas Mixtures
 - x. Dalton's Law and Partial Pressures
 - xi. Molar Fractions

Gas Transfer

- 1. Describe and apply Dalton's and Henry's laws to gas mixtures to calculate saturated concentrations of dissolved gases in liquids.
 - i. Saturation and Henry's Law with Mixed Gases
- 2. Use CO2 saturation tables and correlations to determine saturated concentrations of CO2 in beer.
 - i. Practical Gas Solubility
 - ii. CO2 Volumes/Volume (at STP)
- 3. Describe the process of super-saturation and how to avoid it or promote it.
 - i. Super-Saturation
- 4. Describe the key parameters which affect the rate of gas transfer and recommend methods for gas transfer rate enhancement.
 - i. Gas Transfer
 - ii. Gas Transfer Dynamics
 - iii. Gas Transfer Technology
- 5. Describe common examples of gas transfer technologies.

UNIT 4: HEAT TRANSFER

Candidates are required to have an in-depth understanding of the following:

Principles of Heat Transfer and Conduction

- 1. Describe the different forms of heat energy.
 - i. Sensible Heat
 - ii. Latent Heat
- 2. Describe the different ways that heat energy can travel through matter.
 - i. Exothermic and Endothermic Reactions
 - ii. Mechanisms of Heat Transfer
 - iii. Steady State and Unsteady State Heat Transfer
- 3. Determine whether a material is a conductor or an insulator.
 - i. Conduction
- 4. Explain how heat is transferred through a wall or pipe with or without insulation.

Convection

- 1. Describe the mechanism by which convective heat transfer occurs at a solid surface, between it and the fluid adjacent to it.
 - i. The Boundary Layer
- 2. Define and explain the importance of the film heat transfer coefficient.
 - i. Film Heat Transfer Coefficient
- 3. Describe and give examples of natural and forced convection.
 - i. Fourier's Law Applied to Convection
 - ii. Natural Convection
 - iii. Forced Convection
- 4. Describe the mechanisms of boiling and condensation.
 - i. Boiling and Condensation Heat Transfer
 - ii. Heat Transfer from Condensing Liquids

Radiation and Combined

- 1. Describe and provide examples of heat transfer by radiation.
 - i. Radiation
 - ii. Stefan-Boltzmann Law
 - iii. Radiation Applications
 - iv. Radiation Enhancement and Mitigation
- 2. Describe and provide examples of scenarios when multiple forms of heat transfer are combined.
 - i. Combined Heat Transfer: Convection and Conduction
 - ii. Fouling Factors
 - iii. Thick versus Thin Wall Pipes
 - iv. Combined Heat Transfer by Conduction, Convection, and Radiation
- 3. Define and calculate the overall heat transfer coefficient for a combined heat transfer process.

Heat Exchangers

- 1. Describe the various heat exchangers used in brewing beer, their key components, and applications.
 - i. Principles of Heat Transfer in Heat Exchangers
 - ii. Flow Configurations in Heat Exchangers
 - iii. Heat Exchanger Passes
 - iv. Plate Heat Exchangers

Heat Exchangers

- 1. Describe the various heat exchangers used in brewing beer, their key components, and applications.
 - i. Principles of Heat Transfer in Heat Exchangers
 - ii. Flow Configurations in Heat Exchangers
 - iii. Heat Exchanger Passes
 - iv. Plate Heat Exchangers
 - v. Plate Heat Exchangers Components and their Assembly
 - vi. Plate Heat Exchanger Plate Design
 - vii. Shell and Tube Heat Exchangers
 - viii. Shell and Tube Heat Exchanger Components and Assembly
 - ix. Types of Shell and Tube Heat Exchangers
 - x. Shell and Tube Heat Exchanger Tube Design and Configuration
- 2. Demonstrate how the configuration of a heat exchanger influences the exchanger design and performance.
 - i. Plate Heat Exchanger Gaskets
 - ii. Eliminating Risk of Product Contamination
 - iii. Plate Heat Exchanger Fluid Mechanics
 - iv. Shell and Tube Exchanger Fluid Mechanics
- 3. Explain, using the principles of heat transfer, how heat is transferred in a heat exchanger, and the factors affecting the rate of heat transfer.
 - i. Heat Transfer Mechanism in Heat Exchangers
 - ii. Overall Heat Transfer Coefficient in Heat Exchangers
 - iii. Temperature Driving Force in Heat Exchangers
- 4. Be able to select and size the appropriate heat exchanger for an application in a brewery and explain the pros and cons of your selection.
 - i. Selecting the Heat Exchanger Type and Configuration
 - ii. Sizing a Heat Exchanger
- 5. Explain why the actual performance of a heat exchanger varies from design and how this can be managed in a brewery.
 - i. Cleaning Heat Exchangers
 - ii. Maintaining and Operating Heat Exchangers

Jacketed Vessels

- 1. Describe the application of jacketed vessels along with their key components and functions.
 - Types of Vessel Heating and Cooling

- 2. Show how the configuration of a jacketed vessel influences its design and performance.
 - i. Jacketed Vessels: Design Considerations
 - ii. Conventional Jackets
 - iii. Dimpled Jacket
 - iv. Half-Pipe Jackets
- 3. Using the principles of heat transfer, explain how heat is transferred in a jacketed vessel and the various factors affecting this.
 - i. Heat Transfer Within a Jacketed Vessel
- 4. Select and size a jacketed vessel for an application in a brewery; explain the pros and cons of your selection.
 - i. Features of Jacketed Vessels
 - ii. Design and Sizing of Jacketed Vessels
- 5. Explain why the actual performance of a jacketed vessel varies from its design specifications, and state how this can be managed in a brewery.
 - i. Control of Jacketed Vessels
 - ii. Considerations for Maintaining and Operating Jacketed Vessels

UNIT 5: UTILITIES PART 1 (STEAM AND REFRIDGERATION)

Candidates are required to have an in-depth understanding of the following:

Steam Theory

- 1. Describe the benefits of using steam as a heating medium in a brewery.
 - i. Steam Properties
- 2. Understand how to use a Mollier chart and steam tables.
 - i. Mollier Diagram and Steam Tables
 - ii. Mollier Chart Example
 - iii. Steam Tables
- 3. Give definitions of, and describe the production methods of, both utility and culinary steam.
 - i. Types of Steam

Steam Technology

- 1. Describe the operation of boilers.
 - i. Steam Generation: Boilers
 - ii. Steam Generation: Boiler Combustion
- 2. Understand the importance of boiler safety.
 - i. Boiler Safety
- 3. Explain the function of the components that form part of a steam reticulation system.
 - i. Water Supply and Treatment
 - ii. Steam Distribution
 - iii. Steam Line Fittings and Equipment
 - iv. Steam Metering
 - v. Condensate Recovery
 - vi. Uses of Steam

Refrigeration Theory and Cycle

- 1. Understand the difference between cooling and attemperation, and describe where you can find examples of these processes in a brewery.
 - i. Overview of Refrigeration
- 2. Explain and demonstrate the use of the refrigeration cycle.
 - i. Refrigeration Principles
 - ii. Refrigeration Cycle
- 3. Explain what a coefficient of performance is and describe its significance in the brewery.
 - i. Energy Quantification
 - ii. Coefficient of Performance
 - iii. Conditions for Efficient Refrigeration Plant Operation

Refrigeration Technology

- 1. Describe the operation of the equipment most commonly used in the primary refrigeration process.
 - i. Primary Refrigerants
- 2. Compare the required properties of common primary and secondary refrigerants.
 - i. Common Primary Refrigerants in Breweries
 - ii. Secondary Refrigerants

- 3. Describe how refrigeration is used in the brewery.
 - i. Refrigeration Process Overview The Vapour Compression Cycle
 - ii. Compressors
 - iii. Screw Compressors
 - iv. Reciprocating Compressors
 - v. Condensers
 - vi. High Pressure Liquid Receiver, Expansion Valve, and Low Pressure Liquid Receiver
 - vii. Evaporators
 - viii. Primary Refrigeration System Configurations
 - ix. Secondary Refrigerant Circuits
 - x. Refrigeration Uses in the Brewery

UNIT 6: UTILITIES PART 2

Candidates are required to have an in-depth understanding of the following:

Water

- 1. Describe the different types of water used in the brewery.
- 2. Describe the operations within common water treatment processes.
 - i. Water Intake and Pre-treatment
- 3. Compare different water treatment processes.
 - i. Raw Water Treatment Sand and Multimedia Filters
 - ii. Raw Water Treatment Activated Carbon Filters
 - iii. Changing Water Composition
 - iv. Ion Exchange
 - v. Serial Ion-exchange Systems
 - vi. Membrane Technology
- 4. Recommend water treatment options based on different sources and conditions.
 - i. Advantages and Disadvantages of Membrane Systems
 - ii. Water Disinfection
 - iii. Boiler Feed Water
 - iv. Overall Water Treatment Solutions

Effluent Treatment

- 1. Compare aerobic and anaerobic effluent treatment systems.
 - i. Primary Effluent Treatment
 - ii. Secondary Effluent Treatment
 - iii. Anaerobic Effluent Treatment
 - iv. Aerobic Effluent Treatment

- v. Combined Anaerobic and Aerobic Treatment
- vi. Tertiary Effluent Treatment
- vii. Other Treatment Options
- viii. Understand the Mogden formula
- 2. Recommend effluent treatment technologies based on the requirements of a brewery.
 - i. Overall Effluent Treatment and Management
- Recommend options for water reuse.

Electricity

- 1. Describe the basic elements of electricity.
 - i. Basics of Electricity
- 2. Recommend where in the brewery to use DC and AC power as well as single-phase and three-phase power.
 - i. Direct Current versus Alternating Current
 - ii. Different AC Voltages and Phases
 - iii. Single-phase versus Three-phase Power
 - iv. Electrical Motors
 - v. Power Factor and Power Factor Correction
 - vi. Internal Power Distribution
 - vii. Maximum Demand
- 3. Explain the differences between earthing, grounding, and overload protection.
 - i. Electrical Safety
 - ii. Electrical Overload
- 4. Recommend where to use soft starters or VSDs.
 - i. Variable Speed Drives and Soft Starters

Gases

- 1. Compare the different methods of generating compressed air.
 - i. Air Compressors
 - ii. Screw Compressors
 - iii. Reciprocating Compressors
 - iv. Blowers
- 2. Compare the different classes of compressed air and describe how they are relevant for different brewing applications.
 - i. Compressed Air
 - ii. Compressed Air Quality

- 3. Explain the typical components in a compressed air system.
 - i. Removal of Contaminants
 - ii. Air Storage, Distribution, and Pressure Control
- 4. Describe the ways in which oxygen and nitrogen can be supplied, stored, generated, and used.
 - i. Oxygen and Nitrogen
 - ii. Liquid Nitrogen and Oxygen
 - iii. On-site Nitrogen Generation

Carbon Dioxide Recovery Technology

- 1. Describe and calculate the CO2 production potential of a brew/fermenter in terms of wort volume and original extract (OE).
 - i. Carbon Dioxide Quantification
 - ii. Carbon Dioxide Production Rate Multiple Fermenter Room (Block)
- 2. Calculate the overall collection efficiency of a CO2 recovery plant, over time, against a brewing schedule.
- i. Typical Purification Performance and Collection Efficiencies
- 3. Describe the function of various approaches to switching tanks over from CO2 vent to CO2 collection and suggest their appropriateness for differing sized brewing operations.
- 4. List the key processes of a recovery plant and their principles of operation.
 - i. A High-level View of Carbon Dioxide Recovery
 - ii. The Recovery Process
 - iii. The Recovery Process and Plant
 - iv. De-fobbing Foam Trap
 - v. Balloon Storage
 - vi. Washing (Scrubbing)
 - vii. Compression
 - viii. Deodorising
 - ix. Drying
 - x. Condensing
 - xi. Storage and Vaporisation
 - xii. Stripping (Distillation)

UNIT 7: PROCESS CONTROL AND INSTRUMENTATION

Candidates are required to have an in-depth understanding of the following:

Principles of Process Control

- 1. Explain how the different components within a process control system relate to the different levels of control.
 - i. Batch and Continuous Processes
 - ii. Process Control Automation Systems
 - iii. Process Communication
 - iv. The Evolution of Control
- 2. Compare the different options available for control (PLC/PC/standalone controllers).
 - i. Instruments
 - ii. Control Elements
 - iii. P&ID Symbology
- 3. Explain the workings of control elements such as pneumatic control valves and VSDs.
 - i. Lines
 - ii. Valves
 - iii. Equipment
 - iv. Control Symbols

Process Instrumentation

- 1. Understand how to apply the factors that influence instrument selection.
 - i. Instrumentation Terminology and Selection
- 2. Describe the principles by which common brewery instruments work and use these principles to evaluate different instruments.
 - i. Classification of Instrumentation
 - ii. Position Instruments
 - iii. Temperature Instruments
 - iv. Pressure Instruments
 - v. Flowrate Instruments
 - vi. Mass Flowmeters
- 3. Recommend instruments for specific brewery applications.
 - i. Vessel Content Measurement
 - ii. Analytical Instruments
 - iii. Dissolved Gases

Process Control Mechanisms

- 1. Describe the basic components of a control loop and understand how to apply these to real brewing situations.
- 2. Compare self-acting, discrete, and continuous control; understand how to apply each of these within different brewing scenarios.
 - i. Self-acting Control Mechanisms
 - ii. Discrete Control
 - iii. Continuous Controllers
- 3. Explain the principles of PID control and describe how the different components affect the controller response.
 - i. Proportional Control
 - ii. Integral Control
 - iii. Proportional and Integral Control
 - iv. Derivative Control
 - v. Combined PID Control
- 4. Recommend process controller configurations for typical brewery applications.
 - i. Single Loop Control Configurations
 - ii. Multiloop Control Configurations
 - iii. Sequence Control

UNIT 8: MATERIALS OF CONSTRUCTION

Candidates are required to have an in-depth understanding of the following:

Classification and Properties

- 1. Apply material classification to different materials.
 - i. General Classification of Materials
- 2. Understand the different properties of materials.
 - i. Properties of Materials
- 3. Understand the most common forms of corrosion and degradation.
 - i. Corrosion
 - ii. Forms of Localised Corrosion
 - iii. Polymer Degradation
- 4. Recommend the best welding practices for common materials used in brewing, such as stainless steel.
- i. Welding

Materials Application in Brewing

- 1. Compare the advantages and disadvantages of materials commonly used in a brewery.
 - i. Ferrous Metals
 - ii. Stainless Steel
 - iii. Other Ferrous Metals
- 2. Recommend the best grade of stainless steel for different brewing applications.
 - i. Important Aspects of Stainless Steels
- 3. Explain why certain materials are used in different applications.
 - i. Polymers: Thermoplastics
 - ii. Polymers: Thermosets and Elastomers
 - iii. Ceramics
 - iv. Insulation Materials

Hygienic Design

- 1. Apply the principles of hygienic design to a brewery.
 - i. History of Hygienic Design and Organisations
 - ii. Hygiene Organisations
 - iii. Components of Hygienic Design
- 2. Describe what is necessary in order for common processing equipment design to comply with hy gienic requirements.
 - i. Materials
 - ii. Equipment
 - iii. Pipes
 - iv. Vessels
 - v. In-line Equipment
 - vi. Valves
 - vii. Installation
 - viii. Welding
 - ix. Building and Support Structures
- 3. Recommend how to use organisations to ensure your processing equipment and facility adhere to hygienic design principles.